Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Disssimilatory Iron-Reducing Organism, GS-15
نویسندگان
چکیده
The dissimilatory Fe(III) reducer, GS-15, is the first microorganism known to couple the oxidation of aromatic compounds to the reduction of Fe(III) and the first example of a pure culture of any kind known to anaerobically oxidize an aromatic hydrocarbon, toluene. In this study, the metabolism of toluene, phenol, and p-cresol by GS-15 was investigated in more detail. GS-15 grew in an anaerobic medium with toluene as the sole electron donor and Fe(IH) oxide as the electron acceptor. Growth coincided with Fe(III) reduction. [ring-.4C]toluene was oxidized to '4C02, and the stoichiometry of '4C02 production and Fe(III) reduction indicated that GS-15 completely oxidized toluene to carbon dioxide with Fe(III) as the electron acceptor. Magnetite was the primary iron end product during toluene oxidation. Phenol and p-cresol were also completely oxidized to carbon dioxide with Fe(III) as the sole electron acceptor, and GS-15 could obtain energy to support growth by oxidizing either of these compounds as the sole electron donor. p-Hydroxybenzoate was
منابع مشابه
Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Dissimilatory Iron-Reducing Organism, GS-15.
The dissimilatory Fe(III) reducer, GS-15, is the first microorganism known to couple the oxidation of aromatic compounds to the reduction of Fe(III) and the first example of a pure culture of any kind known to anaerobically oxidize an aromatic hydrocarbon, toluene. In this study, the metabolism of toluene, phenol, and p-cresol by GS-15 was investigated in more detail. GS-15 grew in an anaerobic...
متن کاملDegradation of Monochlorinated and Nonchlorinated Aromatic Compounds under Iron-Reducing Conditions.
The capacity for Fe(sup3+) to serve as an electron acceptor in the microbial degradation of monochlorinated and nonchlorinated aromatic compounds was investigated in anoxic sediment enrichments. The substrates tested included phenol, benzoate, aniline, their respective monochlorinated isomers, o-, m-, and p-cresol, and all six dimethylphenol isomers. Phenol and 2-, 3-, and 4-chlorophenol were u...
متن کاملInitiation of anaerobic degradation of p-cresol by formation of 4-hydroxybenzylsuccinate in desulfobacterium cetonicum.
The anaerobic bacterium Desulfobacterium cetonicum oxidized p-cresol completely to CO(2) with sulfate as the electron acceptor. During growth, 4-hydroxybenzylsuccinate accumulated in the medium. This finding indicated that the methyl group of p-cresol is activated by addition to fumarate, analogous to anaerobic toluene, m-xylene, and m-cresol degradation. In cell extracts, the formation of 4-hy...
متن کاملThe role of substrate binding pocket residues phenylalanine 176 and phenylalanine 196 on Pseudomonas sp. OX1 toluene o-xylene monooxygenase activity and regiospecificity.
Saturation mutagenesis was used to generate eleven substitutions of toluene-o-xylene monooxygenase (ToMO) at alpha subunit (TouA) positions F176 and F196 among which nine were novel: F176H, F176N, F176S, F176T, F196A, F196L, F196T, F196Y, F196H, F196I, and F196V. By testing the substrates phenol, toluene, and naphthalene, these positions were found to influence ToMO oxidation activity and regio...
متن کاملAnaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns.
Toluene and m-xylene were rapidly mineralized in an anaerobic laboratory aquifer column operated under continuous-flow conditions with nitrate as an electron acceptor. The oxidation of toluene and m-xylene was coupled with the reduction of nitrate, and mineralization was confirmed by trapping 14CO2 evolved from 14C-ring-labeled substrates. Substrate degradation also took place when nitrous oxid...
متن کامل